Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(app(*, app(app(*, x), y)), z) → APP(*, y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(*, app(app(+, y), z)), x) → APP(app(*, x), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(*, x), app(app(+, y), z)) → APP(app(*, x), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(*, x), app(app(+, y), z)) → APP(+, app(app(*, x), y))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(*, app(app(+, y), z)), x) → APP(*, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(*, x), app(app(+, y), z)) → APP(app(*, x), y)
APP(app(*, app(app(*, x), y)), z) → APP(app(*, x), app(app(*, y), z))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(+, app(app(+, x), y)), z) → APP(app(+, x), app(app(+, y), z))
APP(app(+, app(app(+, x), y)), z) → APP(+, y)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(*, app(app(+, y), z)), x) → APP(app(+, app(app(*, x), y)), app(app(*, x), z))
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(*, app(app(*, x), y)), z) → APP(app(*, y), z)
APP(app(*, app(app(+, y), z)), x) → APP(+, app(app(*, x), y))
APP(app(*, x), app(app(+, y), z)) → APP(app(+, app(app(*, x), y)), app(app(*, x), z))
APP(app(+, app(app(+, x), y)), z) → APP(app(+, y), z)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(*, app(app(+, y), z)), x) → APP(app(*, x), y)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(*, app(app(*, x), y)), z) → APP(*, y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(*, app(app(+, y), z)), x) → APP(app(*, x), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(*, x), app(app(+, y), z)) → APP(app(*, x), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(*, x), app(app(+, y), z)) → APP(+, app(app(*, x), y))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(*, app(app(+, y), z)), x) → APP(*, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(*, x), app(app(+, y), z)) → APP(app(*, x), y)
APP(app(*, app(app(*, x), y)), z) → APP(app(*, x), app(app(*, y), z))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(+, app(app(+, x), y)), z) → APP(app(+, x), app(app(+, y), z))
APP(app(+, app(app(+, x), y)), z) → APP(+, y)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(*, app(app(+, y), z)), x) → APP(app(+, app(app(*, x), y)), app(app(*, x), z))
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(*, app(app(*, x), y)), z) → APP(app(*, y), z)
APP(app(*, app(app(+, y), z)), x) → APP(+, app(app(*, x), y))
APP(app(*, x), app(app(+, y), z)) → APP(app(+, app(app(*, x), y)), app(app(*, x), z))
APP(app(+, app(app(+, x), y)), z) → APP(app(+, y), z)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(*, app(app(+, y), z)), x) → APP(app(*, x), y)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(*, app(app(*, x), y)), z) → APP(*, y)
APP(app(*, app(app(+, y), z)), x) → APP(app(*, x), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(*, x), app(app(+, y), z)) → APP(app(*, x), z)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(*, x), app(app(+, y), z)) → APP(+, app(app(*, x), y))
APP(app(*, app(app(+, y), z)), x) → APP(*, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(*, x), app(app(+, y), z)) → APP(app(*, x), y)
APP(app(*, app(app(*, x), y)), z) → APP(app(*, x), app(app(*, y), z))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(+, app(app(+, x), y)), z) → APP(+, y)
APP(app(+, app(app(+, x), y)), z) → APP(app(+, x), app(app(+, y), z))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(*, app(app(+, y), z)), x) → APP(app(+, app(app(*, x), y)), app(app(*, x), z))
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(*, x), app(app(+, y), z)) → APP(app(+, app(app(*, x), y)), app(app(*, x), z))
APP(app(*, app(app(+, y), z)), x) → APP(+, app(app(*, x), y))
APP(app(*, app(app(*, x), y)), z) → APP(app(*, y), z)
APP(app(+, app(app(+, x), y)), z) → APP(app(+, y), z)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(*, app(app(+, y), z)), x) → APP(app(*, x), y)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 17 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(+, app(app(+, x), y)), z) → APP(app(+, x), app(app(+, y), z))
APP(app(+, app(app(+, x), y)), z) → APP(app(+, y), z)

The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))

The TRS R consists of the following rules:

+(+(x, y), z) → +(x, +(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(+, app(app(+, x), y)), z) → APP(app(+, x), app(app(+, y), z))
APP(app(+, app(app(+, x), y)), z) → APP(app(+, y), z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
+1(x1, x2)  =  x1
+(x1, x2)  =  +(x1, x2)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
+2: [2,1]

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(*, app(app(+, y), z)), x) → APP(app(*, x), z)
APP(app(*, app(app(+, y), z)), x) → APP(app(*, x), y)
APP(app(*, x), app(app(+, y), z)) → APP(app(*, x), z)
APP(app(*, x), app(app(+, y), z)) → APP(app(*, x), y)
APP(app(*, app(app(*, x), y)), z) → APP(app(*, y), z)
APP(app(*, app(app(*, x), y)), z) → APP(app(*, x), app(app(*, y), z))

The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x1, x2)
filter2  =  filter2
true  =  true
filter  =  filter
map  =  map
cons  =  cons
false  =  false

Lexicographic path order with status [19].
Precedence:
APP1 > map > app2 > filter
filter2 > filter
true > app2 > filter
cons > app2 > filter
false > app2 > filter

Status:
filter: multiset
true: multiset
APP1: [1]
map: multiset
false: multiset
app2: [1,2]
filter2: multiset
cons: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

MAP(f, cons(x, xs)) → MAP(f, xs)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MAP(x1, x2)  =  MAP(x1, x2)
cons(x1, x2)  =  cons(x1, x2)

Lexicographic path order with status [19].
Precedence:
cons2 > MAP2

Status:
cons2: multiset
MAP2: [1,2]

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(*, x), app(app(+, y), z)) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(+, y), z)), x) → app(app(+, app(app(*, x), y)), app(app(*, x), z))
app(app(*, app(app(*, x), y)), z) → app(app(*, x), app(app(*, y), z))
app(app(+, app(app(+, x), y)), z) → app(app(+, x), app(app(+, y), z))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.